# Mobile Vehicle Security Bus

Ryan Campbell, Ryan Scehovic, Josue Torres, Cody Stricker, Riley Lawson, Levi Jansen, Drake Ridgeway

# 2015 Jeep Hack Synopsis

- 2015 Jeep Cherokee wireless attack
- Affects all Chrysler vehicles with Uconnect head unit
- Patch released but via USB / dealership



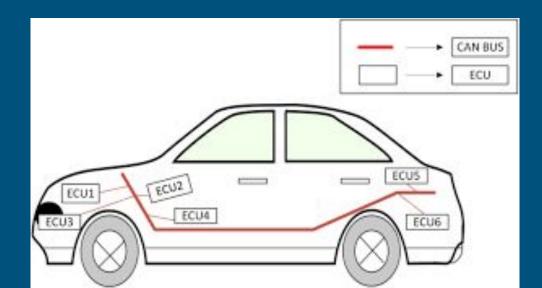
# Our Client

- John Potter
- John Deere Project
  - Running experimental group
  - Edge cases?
  - Additional security risks?



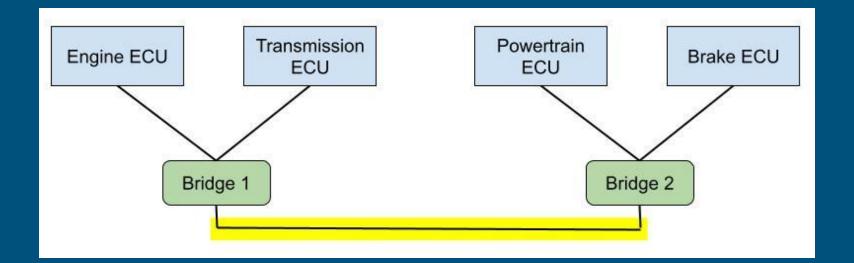


Iowa State University Department of Agricultural and Biosystems Engineering


## Why is this project important?

- Driver Safety
- Environmental Concerns
- Malicious potential
- Trust, Integrity, Safety

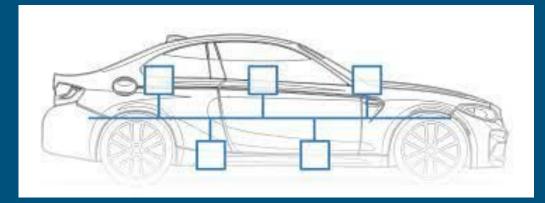



## **Project Vision**

- Improve safety of vehicles by encrypting data sent on the Controller Area Network (CAN) bus



#### **Our Focus**


- Bridge to Bridge communication



## **Potential Users**

- Vehicle Manufacturers
- Distribution Companies
- Everyday Drivers
- Car Enthusiasts





#### **Functional Requirements**

- Encrypt and decrypt the data while maintaining the speed (max of 3800 messages/sec)
- Detect and reject malicious messages sent onto the bus
- Pack multiple CAN frames into one CAN FD frame

#### Physical Requirements

- Must be backwards compatible with a normal CAN network

- An Operational Vehicle (Running a standard J1939 CAN network)
  - Ex. Tractor, Car, Bulldozer

#### Project Plan - Tasks and Risks

- Choose programming language
- Find a proper cryptography library
- Simulate CAN data for testing
- Distribute workload

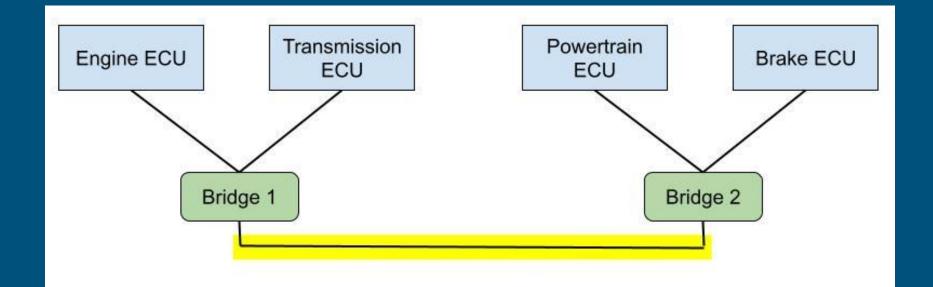
#### Project Plan - Tasks and Risks Cont.

- Upgrade CAN frame into CAN FD
- Adapt to coding environment
- Encrypt CAN frames
- Decrypt CAN frames

#### **Project Plan - Milestones**

- Select tools for project
- Successfully simulate
  - environment
- Simulate CAN messages
- Upgrade CAN into FD frame

- Structure code
- Able to encrypt CAN messages
- Complete encryption/decryption


cycle

- All CAN frames read correctly

## Project Plan - Schedule

|                                       | Oct | Nov | Dec | Jan | Feb | Mar | Apr | May |
|---------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|
| Choose<br>programming<br>language     |     |     |     |     |     |     |     |     |
| Find crypto library                   |     |     |     |     |     |     |     |     |
| Setup virtual<br>environment          |     |     |     |     |     |     |     |     |
| Simulate CAN data                     |     |     |     |     |     |     |     |     |
| Upgrade CAN frame<br>into CAN FD      |     |     |     |     |     |     |     |     |
| Syntax and<br>Development<br>Practice |     |     |     |     |     |     |     |     |
| Encrypt and Decrypt<br>CAN frames     |     |     |     |     |     |     |     |     |

# **Conceptual Design Diagram**

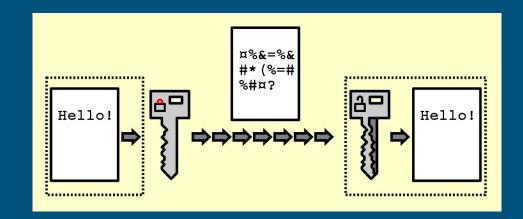


#### **Task Decomposition**

- Created a C program
- OpenSSL libraries
- Send key into encryption method
- Decryption method
- Process ~11,000 messages/sec (3x faster than J1939 Standards)
- Delays using difference of timestamps

## System Design

- Developed in C
- OpenSSL AES128 encryption/decryption
- J1939-22 (CAN FD)
- Tools: Socket CAN, OpenGarages, Sniffer Tool




#### Test Plan

- 1. Develop a virtual environment for which each component can communicate with each other
- 2. Create a testing platform that generates randomized CAN frames to replicate real-world use of a CAN network
- 3. Utilize concrete unit tests to evaluate edge and corner cases
- 4. Evaluate performance using constraints, guidelines and goals

# Design Complexity

- Gauging the entire scope of the project
- Getting familiar with cryptography
- Encryption and decryption using OpenSSL



## Prototype - Phase 1

- Locates and processes 16 digits to encrypt from each line of CAN log file
- Set encryption/decryption keys
- Print output of CAN frames

canData: 00000006200FFFF encrypted: 638d311062e8acc1b8e4c6aef8387ae decrypted: 00000006200FFFF ------ End Of Line 18762 ------

canData: 8B84FFF1B004413D encrypted: 6f768a381e8e258df464d049b590db1d decrypted: 8B84FFF1B004413D ----- End Of Line 18763 -----

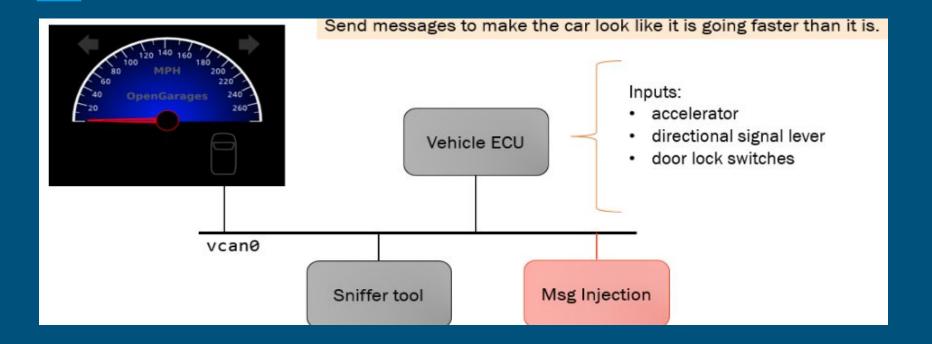
canData: 0E010E01FFFFFFF encrypted: 2de64b7dc2e4f093c3c8e1d519a5f466 decrypted: 0E010E01FFFFFFF ------ End Of Line 18764 -----

canData: 6EFFF00FFFFFFF encrypted: 8a7bb3de91c51ca39bd1e1c175c decrypted: 6EFFF00FFFFFFF ----- End Of Line 18765 ------

canData: FFFE36FFFFFFFFF encrypted: bc4d183fcd2bcf15dd5e2db47a432c0 decrypted: FFFE36FFFFFFFF ----- End Of Line 18766 -----

canData: 6406FF7FFFFFFF encrypted: ef8c3efee4be3484742d3a0f9af65e6 decrypted: 6406FF7FFFFFFF ----- End Of Line 18767 ------

canData: F1FFA89441FFFFF encrypted: b68e436f6f9ce4154c425aa81c37bd0 decrypted: F1FFA89441FFFFF ----- End Of Line 18768 -----


canData: 640EF400FFFFFFF
encrypted: d8c8ee23eb899750a87a233c89ef79
decrypted: 640EF400FFFFFFF
------ End Of Line 18769 ------

## Prototype - Phase 2

 Takes ECU type as parameter and only allows CAN frames of the same type to pass through

| current time: 4419.967450 |                        |                             |
|---------------------------|------------------------|-----------------------------|
| line 18718: 4419.967450 1 | 18FEDF00x Rx           | d 8 89 AE 41 FF FF FF FF 05 |
| current time: 4419.977258 | last time: 4419 967450 | toSleep: 9807               |
|                           |                        | d 8 FF FE 34 FF FF FF FF FF |
|                           |                        |                             |
| current time: 4419.977550 |                        |                             |
| line 18737: 4419.977550 1 | 0CEFFF00x Rx           | d 8 64 06 EE 7F FF FF FF FF |
| current time: 4419.978128 | last time: 4419.977550 | toSleep: 578                |
|                           |                        | d 8 F1 FF A7 96 41 FF FF FF |
|                           |                        | 18 - 19                     |
| current time: 4419.978421 |                        |                             |
| line 18740: 4419.978421 1 | 18FEF200x Rx           | d 8 CD 03 FF FF FF FF FF FF |
| current time: 4419.987169 | last time: 4419.978421 | toSleep: 8748               |
| line 18753: 4419.987169 1 | 0CF00400x Rx           | d 8 F1 FF A8 9C 41 FF FF FF |
| current time: 4419.997487 | last time: 4419.987169 | toSleep: 10317              |
|                           |                        | d 8 FF FE 36 FF FF FF FF FF |
| ourrent time, 4410 007775 | last time. 4410 007407 | toCloope 200                |
| current time: 4419.997775 |                        |                             |
| line 18768: 4419.997775 1 | OCEFFFOOX RX           | d 8 64 06 FF 7F FF FF FF FF |
| current time: 4419.998061 | last time: 4419.997775 | toSleep: 286                |
| line 18769: 4419.998061 1 | 0CF00400x Rx           | d 8 F1 FF A8 94 41 FF FF FF |
| current time: 4419.998350 | last time: 4419 998061 | toSleep: 288                |
|                           |                        | d 8 64 0E F4 00 FF FF FF FF |
| CINC 10//01 110/000000 1  | 101100000              |                             |

## Potential Vulnerabilities



## Conclusion

- Vehicle security is of utmost importance in today's digital era
- We've learned a lot through the progress we've made, but there's still a lot of work ahead of us
- Our goals for next semester include:
  - Learning to better integrate ourselves into a team-based environment
  - Developing our bridge concept into a working model
  - Engineering a fully-fledged virtual prototype of a CAN bus network
  - Having fun every step of the way

#### Sources

- <u>Hackers Remotely Kill a Jeep on the Highway</u>—With Me in <u>Ithttps://www.wired.com > Security > cybersecurity</u>
- https://git.ece.iastate.edu/sd/sdmay23-14