
5 Testing
Testing is an extremely important component of most projects, whether it involves a circuit,
a process, power system, or software.

The testing plan should connect the requirements and the design to the adopted test
strategy and instruments. In this overarching introduction, given an overview of the testing
strategy and your team’s overall testing philosophy. Emphasize any unique challenges to
testing for your system/design.

In the sections below, describe specific methods for testing. You may include additional
types of testing, if applicable to your design. If a particular type of testing is not applicable to
your project, you must justify why you are not including it.

When writing your testing planning consider a few guidelines:

· Is our testing plan unique to our project? (It should be)

· Are you testing related to all requirements? For requirements you’re not testing
(e.g., cost related requirements) can you justify their exclusion?

· Is your testing plan comprehensive?

· When should you be testing? (In most cases, it’s early and often, not at the end
of the project)

5.1 Unit Testing
What units are being tested? How? Tools?

The mobile security CAN bus has two functions: encryption and decryption. How we have
tested both of these is by creating a C program that uses AES encrypt and decrypt
functions using the OpenSSL library. What we are specifically designing this algorithm to
encrypt and decrypt is the CAN data being sent between two networks, so we have a CAN
data log file that we are iterating through as a test subject and ensuring we can encrypt that
data line by line, and decrypt it as well. The tools we are using for this are Red Hat Linux,
Emacs, C, and Terminal.

5.2 Interface Testing

What are the interfaces in your design? Discuss how the composition of two or more units
(interfaces) are being tested. Tools?

The main interfaces of our design are, the vehicle, the vehicle’s can system, our CAN
bridge device, our code within that device, and the OpenSSL library used within our code.
Between our code and the OpenSSL library significant testing and research will be done to
ensure that we are using the OpenSSL library correctly. We will be using Red Hat Linux and
Emacs to write our code and perform our tests on our code. To test our code within the CAN
bridge device we will attach it to a physical system, or a simulated one to validate that we
are able to read and output the correct data with the device. Tools for creating a simulated
environment will be done through matlab and simulink.

5.3Integration Testing
What are the critical integration paths in your design? Justification for criticality may come
from your requirements. How will they be tested? Tools?

Some critical integration paths include our encryption and decryption methods, and printing
them out correctly. Receiving and distributing the keys within the encryption and decryption
methods is critical for it to be correct. Some of the physical components that need to work
for our integration paths to work would be physical parts of our vehicle (e.g. speedometer,
engine, steering wheel, etc.). They’ll be tested by checking if the key is correct on each end
from our program in a simulation from the software socketCAN. Other tools we are using
are OpenGarages, Vehicle ECU, CANSniffer, Linux RedHat, and programming language C.

5.4System Testing
Describe system level testing strategy. What set of unit tests, interface tests, and integration
tests suffice for system level testing? This should be closely tied to the requirements. Tools?

The most significant form of full system testing we will have is running our product on a
physical vehicle (tractor). The most obvious way that these tests will be conducted is to
confirm that the vehicle still operates as normal while our device is connected. We will also
be reading the CAN FD frames to ensure the data is progressing through the system as
normal while we also attempt to perform man in the middle attacks on the CAN bus. Other
forms of system testing include simulating vehicles through matlab and simulink as well as
using basic text files containing CAN data.

5.5Regression Testing
How are you ensuring that any new additions do not break the old functionality? What
implemented critical features do you need to ensure do not break? Is it driven by
requirements? Tools?

The list of features that our product needs to have is encryption, decryption, not allow
repeats of data, and to deny any Man in The Middle attacks. Right now, we have the

encryption and decryption algorithm set, so moving forward, we are going to have to look at
the CAN FD frame and see if we can “verify” what is a “good” packet and what is a “bad”
packet by utilizing the bit fields of the frame. To ensure that we don’t break our code, we are
going to frequently compile and ensure it still successfully encrypts and decrypts the data
without a buffer overflow, as we are working with C. The list of tools we are using for
regression testing are Linux Red Hat, C, Emacs, and Terminal.

5.6Acceptance Testing
How will you demonstrate that the design requirements, both functional and non-functional
are being met? How would you involve your client in the acceptance testing?

First, we will demo our algorithm with a laptop simulation using socket can, and a demo our
client showed us early on in the semester. This demo will prove whether or not our program
can survive a Man in The Middle attack, or detect duplicates of data being sent based on
freshness values in the CAN FD frame. Once this is a success, our client has mentioned
that we will be using our algorithm on a real tractor he will get on campus for us to see how
successful we were.

5.7Security Testing (if applicable)

The main testing for the security of our application is going to ensure that the vehicles that
are continuously running this code on their CAN busses won’t be susceptible to Man in the
Middle attacks, nor will a malicious user be able to send repeats of data sniffed on the can
bus network. Right now, we have the encryption and decryption algorithm set, so moving
forward, we are going to have to look at the CAN FD frame and see if we can verify what is
a “good” packet and what is a “bad” packet by utilizing the bit fields of the frame.

5.8Results
What are the results of your testing? How do they ensure compliance with the
requirements? Include figures and tables to explain your testing process better. A summary
narrative concluding that your design is as intended is useful.

The main result we’ll be testing for is that we can send encrypted messages on the CAN
network and that they are able to be decrypted when they arrive at their endpoint. For testing
this, we can make sure a decrypted message is the same as the original message before
encryption. We are planning on using AES128 CTR (counter mode) encryption, which can be
seen in the following 2 diagrams:

We’re using the OpenSSL library for encryption/decryption so knowing that the algorithms work
is a big benefit since designing our own would make for way more testing of all possible inputs.
With what we’re using, we have to be more careful of the inputs we’re giving and that they fit the
constraints of the algorithms we’re using.

Our results will ensure compliance with the requirements because our tests will identify any
problems within our project that need to be addressed so if we continuously test while we
develop, we can debug code as we go. Any non code related tests, say on hardware
components can be done when testing on the physical CAN network.

